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ABSTRACT

The class of Interpolatory-Newton iterations is defined and analyzed
for the computation of a simple zero of a non-linear operator in a Banach
space of finite or infinite dimension. Convergence of the class is estab-
lished.

The concepts of "informationally optimal class of algorithms'" and
"optimal algorithm'" are formalized. For the multivariate case, the optimal-
ity of Newton iteration is established in the class of one-point iterations

under an "equal cost assumption ",
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1. INTRODUCTION

In Traub and Wozniakowski [76c] we investigate the class of direct inter-
polatory iterations In for a simple zero of a non-linear operator in a Banach
space of finite or infinite dimension. The solution of a "polynomial operator
equation'" is required at each step. 1In .this paper we consider the solution
of this polynomial operator equation by a certain number of Newton iteration
steps. We call this the class of Interpolatory-Newton iterations INn. We
analyze the convergence and complexity of this class.

Traub and Wozniakowski [76¢] show that the radius of the ball of conver-
gence of In can grow with n. Since INn uses Newton iteration as its "inner
process" its convergence characteristics are similar to Newton iteration
(Traub and Wozniakowski [ 77 ]) and the convergence is only "local". A “type

of global convergence" is established for a certain class of operators.

The complexity analysis of INn requires some new complexity concepts. We
formalize the idea of "optimal algorithm". Under an "equal cost assumption"
(and one additional reasonable assumption) we establish the optimality of I

3

for scalar problems and the optimality of IN2 = I2 (Newton iteration) for

multivariate problems. However, if the equal cost assumption is violated a
high order iteration is optimal,

We summarize the results of this paper. Convergence of the class of
iterations is established in Section 3. General complexity results are obtained
in Section 4 and used to establish the optimality results of Section 5. In the

final section we analyze a class of problems for which Newton iteration is not

optimal.
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2. INTERPOLATORY-NEWTON ITERATION INn

In Traub and Wozniakowski [76c] we consider interpolatory iteration In

for the solution of the non-linear operator equation

(2.1) F(x) =0

where F: D C Bl - 82 and Bl, B2 are real or complex Banach spaces of dimension
N, N = dim(Bl) = dim(Bz), 1 £ N s+, The interpolatory iteration I is de-
fined as follows. Let Xy be an approximation to the simple solution « and let

W be the interpolatory polynomial of degree = n-1 such that
2.2 vPa) = rPx), 5=0,1,... 01

*
where n 2 2. The next approximation x

1+1 is a zero of Wi wi(x

*
i+1) = 0, with
a certain criterion of its choice. Note that for n = 2 we get Newton itera-
* -
tion since Xib1 =% " F(xi) lF(xi). The degree of wy is, in general, equal
*

to n-1 and for n 2 3 we get a "polynomial operator equation" for X1t There
are a number of ways for dealing with the problem of solving this equation

*
numerically. In this paper we will approximate Xi1 by applying a number of

Newton iterations to the equation wi(x) = 0, Let

where k = rlogz nl.

We shall call the iteration constructing {xi} by (2.3) the interpolatory-

Newton iteration INn' This is a one-point stationary iteration without memory




in the sense of Traub [64]. Note that for n = 2, (2.3) reduces to Newton

iteration and IN2 = I,. To compute 2z

2 one must solve the linear equation

j+1
L} -

wi(zj) (zj zj+1) = wi(zj). We do not specify what algorithm is used to

solve this linear equation. In fact, INn is the name of a class of iterations

which use the same information (2.2), and perform k Newton steps to solve

vi(x) = () but they can differ in the aléorithm used to solve the linear equa-

ton. For example, by Newton iteration we mean aﬁy iteration which produces

X1 = L F'(xi)-lF(xi) no matter what algorithm_is used to compute x

i+l

P ———

Some properties of the interpolatory iteration In’ n 22, will be used
to establish the convergence of INn. Let o be the simple solution of F(x) = 0

and J = {x: |k-of| s T}. Define

5 gia)
(2.4) Ay = A" = sup [F' (@ * E—ETiﬂllL =3,
X

»

whenever F exists.

From theorem 2.1 in Traub and Wozniakowski [76c] directly follows

Theorem 2.1

If F is twice differentiable in J and
1
(2.5) Azr . B
(2.6) Xy €J

*
then the next approximation X, constructed by Newton iteration satisfies

+1

A 1
lkgyr-ell = Tz learalf = glky-olh
2.7

*i+1

N -;-F'(a)-LF"(Or) (xi-ﬁt)2 * °(”"1'°’“2)‘ -

e R e R — —




Furthermore, from theorem 2.1 in Traub and Wozniakowski [76e¢] follows

Theorem 2.2

If F is n-times differentiable, n 2 3,in J, and

nAT'n-l n-1
2.8) 1'-\A2r <($) -

2.9) X €J

then the polynomial w, has a unique zero in J; = {x

* :
in J, we get
X501 as the zero of v, 1 g

%*
Al -l el

*
LA, by q-all

+ kgmolf = 3l s

*
\ 2.10) |k, 4-all <

n
2.3 % b -a = i:,lL F' (a)-lF(n) () (x -+ o(Hx -a|r).
( i+l n' i i

3 "x-or“ = %‘"] and defining

—)




3. CONVERGENCE OF INTERPOLATORY-NEWTON ITERATION
We study the convergence of IN, for n 2 3. Let - lki-a”, Yy

Theorem 3.1

If F is n-times differentiable, n 2 3, in J and

(3.1) 0=ET =< 1/5

where ”~ A2 + E1%----1-1An(21")n.2

A =—=

2

g
1- AT - nAK(%)n -1

(3:2) "'x. €3

0

then the sequence [xi} constructed by the interpolatory-Newton iteration INn

is well-defined and

(3.3) X, € J, vi,

k
L. 31
= < {= -
e lim o SR {2"'5(2)]‘*1’ b

n
<
(3.5) el Ci,n e where
* n * k
e . A k e, 2-n
c, = (w8 _ . %) ?! [l—itl)e
i,n ey Yok * 2 i ey i
2 i+l :
* * 5
for € " |k1+1 -a“, Hi - O(ei) and 0 < Hy = 3 k = [1032 nl,
lim C = A + 6Z;n'1 where § = 0 if 2k =n, and § = 1 if 2k = n,
N i,n n

R N ———




B

(3.6) xy e = F (-0 + by 4 olk;-alf)

where 2

bj1 =Py~

2

b1 "Fp By 1= L2, kel

and
( i

Fj & ;}) F'(a)-lF(j) (d) for j = 2 and n. &

Proof

Assume by induction that x; € J. We want to show that the interpolatory-

Newton iteration is well-defined, i.e., wi(z ) is invertible. First we shall

J
prove that w'(x) is invertible for x € J and next that zj € J. Denote

3.1 FP () - wij)(x) - Réj)(x;xi) for x' € J, § = 0,1,2,

where

B (@™ R Gexp) I < 52(T) Ay e, 1P,
see Rall [69, p.124]. Since
wi(x) =F'(x) - Rﬁ(x;xi) =F'([I+ F'(ao-l{F'(x) - F'(a)} - F'(a)-lR;(x;xi)]

then from (3.7) and (3.1) we get for x € J

(3.8) [F' (@ N0 - 1|| = 28, |keof| + na_[kex, [P7T <

n=-1 %
< S =
2A2T + nAn(ZF) 5 < s

From theorem 10.1 in Rall [69, p.36] it follows that wi(x) is invertible for

any x € J and




— . p——— g2

iy g

1

1 - 24, |k-of| -na_[kex 1

3.9 |k @] =
Since the denominator in (3.1) is positive then

nAr‘“' -1

1-A T <<3

and from theorem 2.2 follows that the polynomial v has a unique zero in

J, = {x: |k-af| S%r], w(x ®y o 0, and (2.10) holds. From (3.9) and (3.7) we

1 L+1)
get for x € J
11

Ly W(x) - _lw_(x)
(3.10) ”"'1("1:-1) : 4|l s Ib'i(xiil) @l [F @ ot b

e s R NG

<
* * -1 3o =1
L= 2 [kpy ol - oagfheyy-x P70 1- a7 - m gD

= K;,

We investigate the properties of {zj] defined in (2.3). Recall we solve
wi(x) = 0 by Newton iteration. Note that z, = X, - F'(xi)-lF(xi) is the
Newton step applied to the equation F(x) = 0. From (3.1) we know that

AT < /4 and from theorem 2.1 we get

ley-all < 3lk,-al| .

o *
Since X1 € I lhl-xt+1” <T.

* 1 *
We prove that Zi41 lies in Dj = {x: lk—xi+1||5 Elhj-xi+1||} 13 Lat

) + R, (x32.)

(3:11) wi(x) = wi(zj) + wi(zj)(x-zj 2 (%32,

where iz(x;y) = fl wz(y+t(x-y))(x-y)z(l-t)dt,
0




o

R ——

.

=8

for x,y € J, compare with (3.7). Note that zj+1 is the zero of the equation

3.12) x=H® Lx ] +w (xi+1)-1{R2(X;zj) - RyGesxg .

We show that H is contractive on D,. From (3.10) we have for x € Dj

J

* ~ * D % 1 b
|h(X)-xi+1“ s Az(Hx-zJ-Hz 0 Ib"xi+1”2) SEAZHZJ'XHJHZ o E”zj-xi+1“

due to (3.1). Furthermore
* * 1 B
lco-all < [k 5 -oll +BGo-x S [ = &+ Hr=r.

Thus H(Dj) = Dj' Since |H'(x)]|| = 2K;|hj-xf:1“ s ZZ;T < 1 then H is contractive

on D, and z is the unique zero in Dj'

j j+1

This proves that x =z € J and

i+l

k
* 1 % 1
Iheppymell Ty gy 1+ Thegyy=all <(3) legmxgyy 1+ lk-all <

k
371 1 o
‘('2'(5) & E) lke-all < § Ihe-oll
which yields (3.3) and (3.4).

Let 'é'j = Ihj-xizlll . Set x =z, in (3.12). Then

+

~ ~ 2
Ka+¢ /) L &
3.1 T . c-k L. <% (i )s
T S e e
2 j+1
where Hi = 0(;3) and 0 < Hi <5/2, compare (2.7). Since :} = O(ei) we can

write H1 - O(ei). Next from (3.13) and (2.10) we get




“n

LSl i s

L

1 = kgl s H"i+1"‘1:t1”+ ”"1:1'““ =+ ”"1:1'“” -y

k k ¥
~ 2-1 * i+1
< [A, (1+H)) ] ”"1"‘1+1”2 - €+ )
2 i+1
k
* B * 2-n
e A k e
< <1+ §+1> s [3'2(1+H1) ]2'1 <1+ ——i+1>ei
i - k.o €4
2 i+1
n
Ci,nei :

Since ei+1/e and H; tend to zero then

-

where § = 0 if 2k > n and 8 = 0 otherwise. Hence (3.5) holds.

Finally observe that

ST -1 Vi) AR ~3
Babl = Moy WRAE ) e (zj'xi+1) * O(ej) %
: . gt (0 e SR
F' (@) (zj l+1) + O(ei+1 ej )
- Ty ~
Fz(zj-xi+1) + o(ej).

Thus
e 2 2k
Z, " X F2(F2 SieH (F (x =% 1) ) wece. P A o(ei ) =

k
= FZ(FZ'...'(FZ(xi-a)z)2 ...)2 + o(ei h 1

From the definition of bi K in (3.6) we get
’

* k

2
2= X bi,k + o(ei b e




=10~
From this and (2.11) we have
* * b n n
Bypy = ER B E TR r b R T e F a(ey)
which proves (3.6) and completes the proof of theorem 3.1. a
Remark 3.1

It is possible to get a slightly better estimate than (3.1) although the
proof is much more complicated. Note that if n is not a power of 2 then

k

2k > n and the leading term in (3.6) is Fn(xi-a) since |bi ]= O(ei ) = o(ez).

!

Remark 3.2

The idea of using Newton iteration to estimate a zero of an approximating
non-linear operator which fits the information of F can be applied for any
iterations with or without memory; see Brent [76] where Newton iteration is

also used as an inner iteration. 3

Remark 3.3
Since Newton iteration is numerically stable it is relatively easy to
verify the numerical stability of the interpolatory-Newton iteration INn under

appropriate assumptions on the computed information of F, see Wozniakowski

(76b]. k]

In general the interpolatory-Newton iteration converges only locally. We

give conditions under which IN enjoys a "type of global convergence'. Compare
the same property_for Newton iteration in Traub and Wozhiakowski FEa )

Let F(x) = Z‘ %T F(i)(or)(xi-a)i be analytic in D = {x: lk-a“ < R} and

i=]

’ Vg~ g (D)
1 ¢.u E (or)iF (@] ¢ (i-1




: -11-
!

for i = 2,3,..., R 2 I/R.

One way to find K is to use Cauchy's formula

'@ ¥ P n
i Ri

where M = sup IF' (a)-LF(x) “ . Setting K = max(-g;-, }—42) we get M/R < KR = (KR) i=3
X R
which yields W/ < ki~1

Theorem 3.2

If F satisfies (3.14) then the interpolatory Newton converges for

X, €J = x: |k=-of| = T‘n} where

T =
n

7¢|=>4

and X 0 < X, < x_, satisfies the equation

n-1 / .
(3.15) 5(—=— , Bacl) 2x> >. N R 3x > :
<‘1"‘)3 4 (1= NI 10> (10220

and X, 7 x_ where X, 1s the smallest positive solution of x/(l-x)3 = 1/6 and

x, & .12, [ ]

Proof

From (3.14) we get

F' @ TP 0 || s £ (|)ea]] )

{=
where f(x) = x/(1-Kx). Since f(i) (x) = 1K 1/(1-Kx)1+1 for i 2 2, we have

L " Zsdssss

3
i
g




|
|

=10

b -

Then (3.1) becomes

n-1 n-1
~ n!n- ) 3Kr 1
2 "\@xn° T 4qexo I‘Kr < (@aary” (xR ;

Setting KI' = x we get that x satisfies the equation (3.15). It is straight-

forward to verify that x = x(n) is an increasing function of n and lim x(n) = X

n
where x_ satisfies the equation

;I
(l-x)3
Hence x_ = .12 which proves theorem 3.2, .

This result is especially interesting if the domain radius R is related

1 1 i O 0.12
to X’ say R = X Then Fﬁ ke LR = : X and the interpolatory-Newton

-

i 1 1

iteration enjoys a "type of global convergence".

3
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4. COMPLEXITY OF ONE-POINT ITERATIONS

In this section we deal with complexity of one-point iterations. We
extend some of the results of Traub and Wozniakowski [76a].

Assume that a one-point iteration ¢ constructs the sequence x,

i+l " w(xi;F)

converging to o and satisfying

.0 e vl e, wo=flxcell tel2,. . x
where p, p > 1, is called the order of iteration q,
%.2) o<gscisa<+g o= f.2 .8

and the iteration is terminated after K steps.

—————-

From (4.1) we get

1 —
-1 i-1 i-2 i-1
SEAN" 1 g P P
(4.3) e ("'1) e, where o Ql G, eetGy ey

G
i Note that (eowi) P is the geometric mean of the GI’GZ""’Gi' Furthermore

<
e, <e 5 w, > 1. From (4.2) we get

(4.4)

We shall assume that w > 1.

For a given €', 0 < e¢' < 1, let K be the smallest index for which ey < e'eo.

Define e < e¢' so that

(4.5) eK = Eeo.

“.
: e T A
§ mms R e

N ———— —— g — L T — -
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Let comp = comp(v,F) be the total cost of finding X+ Assume that the
cost of the ith iterative step does not depend on the index i; we denote it

by ¢ = ¢(v;F). Then
(4.6) comp = cK.

From (4.3) and (4.5) we get

= ¢ and K =

K
l 3[3 -1 g(wK)
¥ log p

where

.7 g@) = 1g(1 + ﬁ), t =1g 1e.

We take all logarithms for the remainder of this paper to base 2. Then from

(4.6) and (4.7) we get

(4.8) comp = z g(wK)

where
c
4.9 =z = Tep

is called the complexity index.

Since g(w) is a monotonically decreasing function, (4.4) gives bounds on

complexity
(4.10) 2zg(w) < comp < zg(v-v) "
Note that as ¢ - 0, g(w) = lgt and comp = zlgt. If we assume that

(4.11) 2 swswst




w15

then (4.10) becomes
(4.12) z(lgt-1lglgt) < comp < z 1lg(l+t);

see theorem 3.1 in Traub and Wozniakowski [76a]. In this case the complexity
index is a good measure of complexity.
i We want to minimize the total cost of finding L More precisely, for
a given operator F we want to find an iteration 3 with minimal complexity.
Since we do not know the value g(wx) in (4.8) we are not able to minimize
| complexity. However, if (4.11) holds or e is small enough then minimal com-
plexity is approximated for an iteration with minimal complexity index. So
we wish to find an iteration 3 which for a given problem has as small a com-
i plexity index as possible.
The complexity index is given by z = ¢/1g p where c is the cost per one
iterative step and p is the order of an iteration. Assume that an iteration

= ¢, uses the standard information (see WoZniakowski [75a]) mh = mn(x;F) -
(n-1)

F(x),F' (X) ye..,F (x)}. The cost ¢ = c(¢h’mh) consists of the information

complexity u = u(F,mh) which is the cost of computing mn(x;F) and the com-

binatory complexity d = d(wn) which is the cost of combining information and

producing the next approximation. Then ¢ = u+d and (4.9) can be rewritten as

u(F.'Rn) + d(¢h)
lg p(mn)

(4.13) z(q@) =

We want to find an iteration L which minimizes (4.13). Let

4.1%) z (F) = izf z(w,),
CD“ Q“

(4.15) z(F) = inf z (F),
n22

% T — T — T '*m' -
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where @n is the class of one-point iterations using the standard informa-

tion with n evaluations. (Of course INn € 6n’ ¥n.) We need lower and upper

bounds on zn(F) and z(F). Note that upper bounds can be obtained by the com-

plexity index of any iteration ®,» €8s by the complexity index of the inter-

polatory-Newton iteration INn' We shall deal with this in Sectiom 5.
Throughout the rest of this paper we assume that the dimension of the

problem is finite, N < +=,

To find lower bounds on zn(F) and z(F) we need a lower bound on z(¢h).

Note that
n
; e ek )
4.16) uw(FR) =, c@E®)
i=0
where c(F(i)) denotes the “cost" of computing F(i)(x). In the '"cost" one can

include all the costs of computing F(i)

(1)

including the cost of all arithmetic
operations needed to compute F , the cost of variable data access, the cost
of subroutine calls, etc. For the sake of simplicity we assume that the cost
of one arithmetic operation is taken as unity.

In general F(j)(x) requireslié#g-l) different data for its representation.

The total number of data in ﬂn is equal to

n-1
- (NE3- N+n-1
.17 dy =N (J>-N(n_1>.
j=0

For almost all problems the information cost u(F;mn) depends linearly on dN 0"
b}

To make this more precise we introduce

Definition 4.1 (Functional Independence Assumption)

We say F satisfies the functional independence assumption if there exists

a positive constant g such that




- T

—

< "

R

ol

g b

PEIER Y, AP TR

e T P

|

ﬁ : P —

i

(4.18) u(F3R) 2cp dy.n* Mo a

If F depends on all different data in ﬂh then, of course, Cp is at

least equal to unity. However it can happen due to a special property of F

(1)

(like symmetry of some F ) that the information cost u(F;mn) is less than

dN n’ In the functional independence assumption we need not specify the
’

value of cp as long as c_ is positive.

F
We estimate the combinatorial complexity d(“h)‘ Any iteration o has to

use every piece of data at least once as well as the current approximation to

a. Thus
2
(4.19) d(qh) dN,n'
Since p(qh) < n (see Traub and Wozniakowski [76b]) for any iteration o we find

u(r;ﬁtn) + d(o )
1g P(fDn)

d
N,n
= 5 L

(4.20) z(¢h) 2 (CF+1) g n 2 (cF+1)V1

3
where V1 = Tog 3 for N 1 and V1 = N(N+1) for N 2 2. Thus, we proved

Theorem 4.1

For the class of one-point iterations which use the standard information
of F with n evaluations where F satisfies the functional independence assump-

tion, the minimal complexity indexes zn(F) and z(F) are bounded below by
dN n
> b litn
(4.21) zn(F) (cF+1) It s "

3
1z 3 for N | i
(4.22) 2z(F) 2 (°F+1
N(N+1) for N = 2. b |
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5. OPTTMALITY THEOREMS

In this section we deal with the complexity of the interpolatory-Newton

iteration INn, n 2 2. Recall that under the assumptions of theorem 2.1 for

n = 2 and theorem 3.1 for n 2 3 the iteration INn constructs the sequence

{xi} such that

n
(5.1) e Giei-l

where . » ”xi-a” and G, <G for

i

Az/(l - 2A2r3

for n = 2

(5.2) G =0C(n) = &
n An o \2+1 21-(n
‘, {1+q) TAZW + GA2> [(1+q)T] for ' n =12

where ‘:2 is defined by (3.1), q = 51 + %(-zl)k and k = g nl; see (2.7) and (3.5).

Furthermore, recall (2.7) and (3.6),

(5-3) x, ;- =F (x,-0" + By x * o(|k;-alf

where Fn = (-1)n ;];T F'(or)-LF(n) (o) and bi K given by (3.6) is omitted for n = 2.
I : o

From (5.3) it is reasonable to assume that

(5.4) &1 z2G er; o) A TR (R

where G = G(n) is a positive number.

Theorem 5.1

£ ¢ @™ ! 51 then

(5.5) comp(IN) < z(IN) lg(l+t), t=1g %




e AT O R A T PR o

Remark 5.1

=19~
n-1
If G (tT) 2 1 then
(5.6) comp(IN ) = z(IN ) (lgt-lglgt). a f
Proof
g 1 . al/ (-1
From (4.4), (4.11) and (4.12) it is enough to assure that - =0 - = 2
1/ (n- - - - =
and é - e /(a 1)T 2t 1. This is equivalent to G(ZI‘)n * <1 and g(tf’)n b a 1
which hold due to the assumptions. [: |

To assure convergence of the interpolatory-Newton iteration INn, n 23,

~ 1
we assumed in theorem 3.1 Azr S';. To get a good upper bound on complexity

we have to strengthen this inequality to a(ZF)n-l < 1. It may be shown

that E(zr)"'1 <1 forn = 2 implies Azr < 21 . (However both inequalities
2

A I S-l and A ' < -= seem to be slightly overestimated.)

5 21

Note that in general a stronger condition is needed to get '"good complexity"
than merely to assure convergence. In Traub and Wozniakowski [77 ] we showed
that for Newton iteration it is necessary to assume AZV < % for convergence

and AT S-l for "good complexity'”. Note that for n = 2, G2T < 1 is equivalent

2 4
1
to Azr Sz. [ ]

We discuss the complexity index z(INn) of the interpolatory-Newton itera-
tion. Recall that the next approximation is obtained by k = [lg n] Newton
steps applied to wi(x) = 0. It may be shown that the total number of arith-

metic operations sufficient to perform one iterative step of IN is equal to

<arlg nl + N ém 5 (Mg nl- 1> for N 2 2

(5.7) d(IN )
5.allg nl + o(l) for N =1
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where the total number of arithmetic operations necessary to solve a system

of N linear equations is O(Nﬁ), SES

Example 5.1
Consider the iteration IN3 for the scalar case. We solve wi(X) = 0 by

applying k = [1g 3] = 2 Newton steps. Then

n 2
WA R, F(x,) : F"(x,) F“(xi) -
2 § (xi) 2F' (xi) \f'(xi) 1-p,

F"(xi) F(xi)
where Pi = FT?;;T FT?;I). Thus the combinatory cost d(IN3) =9,

Note that Di = O(ei). It may be sl.own that pi = (0 does not affect the

~
order of iteration. Therefore one can define the next approximation X, 23S

2 Fixp)  F'(xp)  [Fixp) 3
(5-8) =, %% = F' (x) - 2F" (x;) E"(xi) ;

It is easy to show that ;;+1 = 31(0) where ;ij)(F(xi)) = g(j)(F(xi)) for

"~

j = 0,1,2 where Wy is a polynomial of degree at most 2 and g(x) = F-l(x) is
the inverse function of F, see Kung and Traub [74]. The iteration which

constructs ;l+1 is called the inverse interpolatory iteration I3

A similar upper bound, O(n 1lg n), on the combinatory complexity for the

and d('i'3) =7. @

scalar case for inverse interpolatory iteration has been obtained by Brent
and Kung [76].
We believe there exist no iterations with essentially less combinatory

cost than that given by (5.7). We propose
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Con jecture 5.1

The combinatory complexity d(mn) of any iteration with maximal order,

p(on) = n, has to be at least

2 /N+n-1 B
2 =
c1 N <j -1i>log n for n 3 and CZN for n 2

for positive €1 and <, independent of n and N. &

We turn to the problem of bounds on the minimal complexity index zn(F)

and z(F), see (4.14) and (4.15).

Definition 5.1

Let

2(F) = z_x(F)

* *
for some integer n . Then we say n 1is the optimal information number with

s 3 (R - -
respect to z(F) (or the optimal information number) and o 1s the optimal

information set (among one-point standard information). An iteration ¢n* (or

a class of iteratioms ¢n*) is said to be informationally optimal. #

From (4.14) and (4.15) we get

n-1
) e+ aam)
2 (1) 5 s ,
(5.9) 2 i
Z e raqn)
z(F) = mi 1g n i

T T e R ——— S ——
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To get further estimates on the complexity index and to find the optimal

value of n we must specify a relation among the c(F(i)). Let c(F) denote the
cost of evaluating F(x) and assume that each new piece of data in F(x),F'(x),.
costs the same number of arithmetic operations. For most problems c(F) is

proportional to N.

Definition 5.2 (Equal cost assumption)

We say F satisfies the equal cost assumption if

5.100 ) = <N+i'> c(F) fori=1,2,... a

Note that the equal cost assumption implies the functional independence assump-

tion but that the converse does not hold.

From (5.10) we get

n-1
(i)
L e ) N+n-3> (N+1) c(F) for N = 2
i=0 n-1
= P
(5.11) 5 is & c(F) :
T§—§ c(F) for N = 1.

Theorem 5.2

If F satisfies the equal cost assumption then the minimal complexity index

z(F) satisfies

(i) for N =1

3 3 3 7
s s —_—
(5.12) i 3 c(F) + 1z 3 z(F) 1z 3 c(F) + g 3°

(5:.13) z(F) = z3(F) whenever e(F) = Hl = 23
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L

%
which means that the optimal information number n = 3,

(ii) for N 2 2

(5.14)  (MD[c(P+N] < z(F) < (WD) [c(F) + d(IN,)/ (WD) ],

(5.15) =z(F) = zz(F) whenever

c(F) =2 HN
where H = [d(IN,)/(W1) - N(W2)/(2 1g 3) J/[(W2)/(2 1g 3) - 1]

*
which means that the optimal information number n = 2. |
Proof

Let N = 1. Note that (5.12) directly follows from (4.22), (5.11) and the

fact that d(T3) = 7. We show that z3(F) < zn(F) for any n. 1In fact

2,(F) S == o(F) + 7o < min +B—(c(@)+]) = 2(c(F)+]
3 1g 3 1g 3 ng3 lg n

min z (F).
n#3

f 3
2 - - E
This yields c (F) <18 3 2>/(2 lg :> 22.5 which holds due to (5.13).

Hence z(F) is minimized for n = 3,

Let N 2 2. The lefthand side of (5.14) follows from (4.22) since Nc

F
The righthand side of (5.14) is the complexity index of Newton iteration.
prove (5.15) observe

= ¢ (F).

To

N+n-1
z,(F) S (HD)[c(F) + d(IN))/ (WD) ] < min D=L

F)+N) =
ney  18n
= (?;2> (c()+N)/1g 3 < min z_(F),

n=3

which is equivalent to c¢(F) = H.N This holds due to (5.15). Hence z(F) is
R minimized for n = 2.
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Remark 5.2

If Gauss elimination is used for solving linear equations then the com-

# + O(Nz).

binatory cost d(INz) of Newton iteration is equal to d(INz) - % N
(Note that we count all arithmetic operations.) Then Hn in (5.15) satisfies
HV — <€ l%fl - j)N = 1.1IN. If the Strassen algorithm is used to solve the

B

linear equations then d(IN2) = O(N’), B=1g 7 £ 2.81 and HN < 0 for large N.

This means the assumption c(F) =2 Hn is not restrictive in this case. =

Theorem 5.2 states that the optimal information number is achieved for
small n, n* = 3 in the scalar case and n* = 2 in the multivariate case, when
the equal cost assumption holds and c(F) is reasonably large. However, we
shall see in Section 6 that the optimal information number need not be small
if the equal cost assumption does not hold.

We know the optimal value of n when F satisfies the equal cost assumption.
We seek an iteration whose complexity index z(wn) is equal to z(F). If c(F)
is large both lower and upper bounds for z(F) in (5.12) and (5.14) are tight.
Since the righthand side of (5.12) is close to the complexity index of IN3

and the righthand side of (5.14) is the complexity index of Newton iteration

INZ’ we see that any iterations in the class IN, and IN, are close to optimal

3 2
among all one-point iterations in the scalar and multivariate cases, respec-
tively. Compare with theorem 4.2 in Kung and Traub [74] where the scalar case

is discussed.

We formalize the idea of optimal algorithm.

Definition 5.2

*
A one-point algorithm ¢ is optimal if ¢ € 5n*’ has order n and has minimal

combinatory cost. El
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*

Let d3

be the minimal combinatory cost of combining (F(xi).p'(xi),yu(xi)}

*
to produce Zi1 such that z, - a= O(ei) in the scalar case. Let dz(N) be

i+l

the minimal combinatory cost of combining {F(xi),F'(xi)} to produce Zi1

such that | O(ei) in the multivariate case. We know

wrmell =
* <7
3 < d3

2 * B8
N+NT = dz(N) = O(N") where B = 1g 7.

*
Recall that xi+1

* *
- = P = = i
‘hi+1 zr+1H O(e}) where p =3 for N = 1and p =2 for N 22. Thus 4, is

is a zero of the interpolatory polynomial wi(x). Then

*
the complexity of approximating a zero of a scalar quadratic equation and dz(N)
is the complexity of solving a linear equation of order N.

*

Using the iteration I3

proximating a zero of a scalar quadratic equation and Newton iteration

with an algorithm of minimal complexity for ap-

* *
IN2 = 12 with an algorithm of minimal complexity for solving of linear equations,

, we get from theorem 5.2

z(IN;) = za(F) = z(F) for N =1

*
z(INZ) = zz(F) = z(F) for N'= 2.
Thus we have

Theorem 5.3

* *
The iteration I3 is optimal for the scalar case and Newton iteration I2

is optimal for the multivariate case among all one-point iterations whenever
F satisfies the equal cost assumption and c(F) 2 HN (as defined in theorem

5.2). %

s
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Remark 5.2

Along the complexity dimension Newton iteration is optimal in the multi-
variate case. But along the convergence dimension the iterations In with
large n seem tc be more attractive. However, to preserve a ''type of global
convergence'" of In one has to approximate a zero of a polynomial operator
equation and this decreases the radius of convergence (see Traub and

Wozniakowski [76¢c]). ]

We have established the informational optimality of IN3 and IN2 with
respect to the complexity index. Of course our primary interest is in com-

plexity. Combining theorems 5.1 and 5.2 we obtain

Theorem 5.4

1f c(F(i)) = 6’:‘9 ¢(F) for i 2 1 and

(1) for N=1, 6(3)(tD? 2 1 and &(3) 272 < 1 then
wde o(F) + =) (lgt=1glgt) = comp(IN,) = [=2= c(F) + ~=) 1a(l+t)
g 3 1g 3/ ‘8= 188 PR, 1g 3 g 3/ 8
(i1) for N 22, G(2)(tT™ =1 and G(2)2™ < 1 then

(N+1)[c(F) + d(INZ)/(N+1)](1gt-lglgt) < comp(INz) < (WD [e(F) + d(INz)(N+1)]'

« 1g(14t).
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6. OPTIMAL INFORMATION NUMBER FOR A SPECIAL PROBLEM

If F does not satisfy the equal cost assumption then the optimal informa-
tion number may be large. For illustration we consider
the class of problems of fixed dimension N where the cost c(F) of evaluating
F varies and each piece of data in F'(x),F"(x),... costs the same number of
arithmetic operations (for instance if F is an integral this often holds).

This means that
6.1 @) « <N+i‘5 &, fordeLi,...

where c1 = cl(N) is a positive constant. Then the information complexity is

i ' given by

|
i u(F;R) = N:i‘i?- 1)e, + e(P).

}' From (4.19), (5.8) and (5.7) the minimal complexity index is bounded by

: c(F) + (N+c1) N:‘_"li)- <, c(F) + N:r_l'l\y- l}c1 + KNZ “:‘_"11> - 1g n
(6.2) < zn(F) <

g n lg n

for a positive constant K independent of N and n.

*
Recall that we define n by

(6.3) z(F) = zn*(F) = :;; zn(F).

The minimum is achieved since zn(F) tends to infinity with n. We are interested
*
in finding n for large c(F). After some tedious algebraic manipulations we

have

P >
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Theorem 6.1

(6.4) z «(F) = N ig%)(H-o(l)), YL e,

For every vy > 1 there exists ¢y = co(Y) such that

1 v
it 5 Y
(6.5) c(F)NV =n = c(F)N for c(F) = -

Theorem 6.1 states that the minimal complexity index is roughly equal to

N c¢(F)/1g c(F) and

-

linearly with c(F)N. Note that

zn(F) = %éE% (1+0(1)) as c(F) = +=

for fixed n. This means that the '"penalty" associated with using non-optimal

fixed n is equal to

z (F)

(6.6) ;;;TF)

= % 1g c(F) (1+o(1))

which tends to infinity with c(F).

*
the optimal information number n tends to infinity almost
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